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Consider the Couette flow of two superposed fluids of different viscosity with the 
depth of the lower fluid bounded by a wall and the interface while the depth of the 
upper fluid is unbounded. The linear instability of this flow configuration is studied 
at all values of flow Reynolds number and disturbance wavelength using both 
asymptotic and numerical methods. Three distinct forms of instability are found 
which are dependent on the magnitude of two dimensionless parameters /3 and (aR)i, 
where /3 is a dimensionless wavenumber measured on a viscous lengthscale, a is a 
dimensionless wavenumber measured on the scale of the depth of the lower fluid and 
R is the Reynolds number of the lower fluid. At large /3 there is the short-wave 
instability found previously by Hooper & Boyd (1983). At  small /3 and small (aR)i 
there is the long-wave instability first discovered by Yih. At small fl  and large (aR)f 
there is a new type of instability which arises only if the kinematic viscosity of the 
lower bounded fluid is less than the kinematic viscosity of the upper fluid. 

1. Introduction 
It is known that the viscosity discontinuity a t  the interface between two viscous 

fluids in shearing motion can cause instability, Yih (1967), Hooper & Boyd (1983, 
hereinafter referred to as HB). HB studied the Couette flow of two superposed viscous 
fluids in an infinite region - that is, in the absence of solid boundaries - and showed 
that the flow was always unstable. Remarkably the instability was in essence a 
short-wave instability. In  contrast, Yih, who studied plane Couette and plane 
Poiseuille flow of two superposed fluids of different viscosity confined to a channel, 
showed that instability may exist in the long-wavelength limit. In  this paper we study 
the instability at all wavelengths of a flow intermediate between those two. 

The flow we study is that of two superposed viscous fluids in linear shearing motion 
bounded by one wall (aee figure 1). We find that, in addition to the Yih-type and 
HB instabilities, there is a new type which arises at large Reynolds number and is 
due to the effect of the viscous boundary layer at  the wall on the inviscid flows that 
can exist on either side of the interface. 

Its growth rate is determined by the ratio of the viscosities and densities of the 
two fluids and the depth of the lower bounded fluid. Equation ( 3 . 3 2 ~ )  of $3.2 shows 
that the flow can be unstable if the kinematic viscosity of the lower bounded fluid 
is less than the kinematic viscosity of the upper fluid. (It is only in $3.2 that we 
consider fluids of unequal density and study the effect of a density stratification on 
the stability of the flow. Throughout the remainder of the paper we consider fluids 
of equal density and study only the effect of a viscosity stratification on the stability 
of the flow.) 
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FIGURE 1. The flow configuration. 

We shall find that the analysis of the linear stability problem depends on three 
important lengthscales: d ,  the distance from the wall to the interface; A, the 
wavelength of the disturbance; and 1, a viscous lengthscale of the disturbance. The 
viscous lengthscale I equals (hv/a)f where v is the kinematic viscosity and a is 
the shear rate of the lower bounded fluid. This lengthscale arises naturally in the 
linearized equations for the disturbance. 

Corresponding to these three lengthscales are three dimensionless ratios : 

d 
a = 2 n -  

A’ 

and 

Here R is the Reynolds number of the lower fluid, is the wavenumber used in the 
HB analysis (there denoted by a). The first two of these parameters is of course widely 
used in hydrodynamic stability calculations (see e.g. Drazin & Reid 1981, chapter 
4) but the importance of /3 seems not to have been widely appreciated. 

The nature of the instability for the flow configuration of figure 1 is determined 
primarily by the magnitude of the parameters (aR)? and /3. When (a@ % 1 and 
/3 % 1, we find the short-wave interfacial instability of HB. A similar kind of 
instability is found at  all values of (aR): 4 1 as long as /3 % 1. When (aR): 4 1 and 
/3 + 1 we find the long-wave instability similar to that found by Yih for Couette flow 
of two viscous fluids in a channel. Yih’s analysis has been extended by Hooper (1985) 
to include the configuration of figure 1. Hooper found that the flow is unstable if the 
unbounded fluid is also the less viscous fluid. Otherwise the flow is stable. The 
numerical results show that this type of instability persists at  zero Reynolds number 
(see figure 6). Surface tension stabilizes the flow and asymptotic results show that 
when the dimensionless surface tension S equals or exceeds 0.00498 (where S is defined 
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in $2) the flow is completely stable at zero R. When (aR)! 9 1 and B 4 1 we find the 
new type of instability which is due to a viscous boundary layer a t  the wall. When 
both fluids are of equal density the growth rate of this instability is determined by 
the ratio of the viscosities of the two fluids. If the unbounded fluid is also the more 
viscous fluid then the flow is unstable and vice versa. 

The problem is formulated in $2. In  $3 we describe a singular perturbation scheme 
which is used to find this new instability that occurs when (aR)i S 1 and B < 1.  In  
$4 we derive the exact secular equation and solve for c numerically. Four different 
asymptotic regimes are identified according to the magnitude of (aR)! and p, and the 
asymptotic analysis for the two regimes, which have not been discussed previously 
by HB or Yih, are described. A discussion of the results in the light of previous 
theoretical and experimental studies is given in $5. 

2. Formulation of the problem 
The basic flow configuration is shown in figure 1. The equations of motion are 

non-dimensionalized with respect to d, the distance from the wall to the interface and 
a,, the shear rate of the lower fluid. This introduces the following dimensionless 
parameters : 

R = a, d2/v , ,  

m = p2/p1, 

r = p2/p1, 

S = T / p ,  a; d3, 

the Reynolds number of the lower fluid, 

the viscosity ratio, 

the density ratio, 

the dimensionless surface tension parameter 

and F = (1 - r )  gdla; d2, 

and a dimensionless coordinate system defined by 

(X,Y)  = (X, Y ) l d  
where (X, Y) are denoted in figure 1. 

We assume the disturbance has an x- and t-dependence of the form exp (ia(x-ct)), 
where a is the dimensionless velocity of the disturbance in the x-direction. The growth 
rate of the disturbance is given by Im (ac) .  

Therefore we find that the stream function in each fluid satisfies the Orr- 
Sommerfeld equations 

(E-a2>, #,(y) = iaR(y-c) q51(y) for -1 < y < 0, ( 2 . 1 ~ )  
dY2 

(2.1 b )  
iaRr d2 

and ( g - a 2 ) l  q52(y) = 7 (y-mc) (--a2) q52(y) for y > 0, 
dY2 dY2 

subject to the no-slip conditions at the boundary y = - 1, 

- ( - 1 ) = 0  dq51 
dY 

(2.2b) 

and the boundedness of the disturbance as y + 00. 
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The boundary conditions a t  the interface are that each component of velocity and 
stress is continuous. Thus we require on y = 0 that  

dl = $2 = d(O), (2.3a) 

(2.3b) 

( 2 . 3 ~ )  

For further details, see Yih (1967). 
I n  $$3 and 4 we wish to  compare some results with those given by HB for different 

values of dimensionless surface tension. We denote the dimensionless surface tension 
parameter of HB as S,, and note that S,, = SH.  Similarly we introduce the 
dimensionless number FHB where FHB = FH. The parameters S,, and FHB are 
independent of the depth of the lower fluid d .  

3. A singular perturbation scheme valid when (aR)+% 1 and /3 -4 1 
1 ,  the viscous lengthscale of the disturbance I is much 

less than the distance between the wall and the interface d and the wavelength of 
the disturbance A. We can therefore argue that within most of fluids 1 and 2 
viscous forces are much less important than inviscid or inertial forces and may be 
neglected. I n  some regions, however, viscous forces may be of the same order of 
magnitude as the inertial forces. These regions are the viscous boundary layer a t  the 
wall, the viscous boundary layer at the interface and the critical layer where the 
velocity of the disturbance equals the basic flow velocity. The solution to the problem 
defined in $2 can therefore be found by a singular perturbation scheme, which is 
described below for the case r = 1 and S = 0. 

When (aR)t % 1 and /3 

3.1. The singular perturbation scheme 
When (aR)6 9 1 and /3 Q 1 ,  the viscous part of the Orr-Sommerfeld equation 
(left-hand side of (2 .1) )  may be neglected except within the viscous boundary layers 
at the wall and interface and the critical layer. Thus outside these layers the 
eigenfunctions dl and d2 both satisfy 

which gives q5p) = boo e-ay+doo eaY (3.2a) 

and #LO) = a,, e-aY (3.2b) 

since d2 is bounded as y + 00. 

Fluid 1 is bounded by a wall a t  y = - 1 and hence contains an inner solution 
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$Iw) valid within the viscous boundary layer near y = - 1. To find this inner solution, 
we transform ( 2 . 1 ~ )  by the change of variable 

z = (aR$ (1 +y) (3 .3)  

to give 

where 

d2w z a2 
2 = [ -i(i +c)+i  ,+-I wl, 
dz2 (aR)z aR  

The form of (3 .4)  suggests an expansion for wl, $iw) and c of the form 

n-0 

and 

( 3 . 4 ~ )  

(3.4b) 

( 3 . 5 ~ )  

(3.5b) 

i n  
( 3 . 5 4  c =  E (m) cn, 

n-0 

where wln satisfies 

and $!I) satisfies 

(3.6b) 

(In ( 3 . 6 ~ )  wlj is identically zero whenj is negative.) 
We are thus able to find a series expansion in (aR) f  for $iw) which is valid within 

the viscous boundary layer at the wall, y = - 1. We match this solution to the inviscid 
solution for (equation ( 3 . 2 ~ ) )  and thus find a series expansion in (all)-; for $f') 
(see ( 3 . 1 4 ~ ) ) .  We assume that the critical layer is not close to either the viscous 
boundary layer at  the wall or the viscous boundary layer at the interface. This 
assumption is verified a posteriori in (3.23). It can then be shown that the eigen- 
function $ has the same form inside the critical layer as outside the critical layer 
since the velocity profile has zero curvature. Therefore the presence of the critical 
layer, whether it occurs within fluid 1 or fluid 2 can be ignored. 

Next we find a series expansion in (aR)f  for the eigenfunctions $ j ,  j = 1,2 ,  within 
the viscous boundary layer at the interface and match the inner interfacial viscous 
solution $ji) to the corresponding outer inviscid solution $p), j = 1,2 .  The eigen- 
functions $ji) are substituted into the four interfacial conditions at y = 0 (equa- 
tion (2 .3)) .  We thus find a series expansion in (aR)-i for the eigenvalue c (see 

We first solve the viscous-boundary-layer equations a t  the wall, (3 .6) ,  at leading 
order. This gives a series expansion in (all)-; for the outer inviscid solution $p) which 
is valid up to O(aR)-i. The boundary conditions at the interface show that the viscous 
boundary layer at the interface does not affect the disturbance until O(aR)-'. 
Therefore we can determine c up to O(aR)f by substituting the inviscid eigen- 
functions $p),j = 1,2 into the inviscid boundary conditions at the interface - namely 
continuity of normal velocity and continuity of normal stress (equations (2.3a, d ) ) .  

(3.23)- (3.27)). 
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The first two terms in the expansion for the eigenvalue c are given in (3.23)-(3.24). To 
determine higher-order terms of c, however, we must consider the full viscous solution 
of the eigenfunctions $* (j = 1,2) valid within the interfacial viscous boundary layer. 
The eigenvalue c is then found to satisfy (3.27). 

The leading-order term for $iW) is found from (3.6) and satisfies 

$1:) = d,, exp[a/(aR)fz]+b,, exp [-a/(aR)tz]+dll epz+bl, e-pr, (3.7) 

where p = e-irl4 (1 + cop. (3.8) 

We require that this leading-order solution match the outer solution in the overlap 
region when 1 +y 4 1 but (aR): (1 + y) % 1. Then both the inner wall solution of (3.7) 
and the outer inviscid solution of ( 3 . 2 ~ )  are valid. This implies that at leading order 

d,, = 0. (3.94 

and do, e-a = blo. (3.9c) 

boo ea = d,, (3.9b) 

The no-slip and no-flux boundary conditions a t  the wall, z = 0, 

yield 

and 

dl0 = $1, * (1 -&) 
(3 .10~)  

(3.10b) 

(3.10~) 

We substitute (3.9) and (3.10) in (3.2) to find that the outer solution for $, may be 
expressed in terms of only one unknown constant and that at  leading order q5p) 
satisfies 

(3.11) 
a 

cosh a( 1 + y )] , 
(aR)! P 

where 

A more accurate representation for $p) is found if we solve for w1 and $Iw) at the 
next order, O(l/(aR)f). From (3.6) and (3.7) we find that 

$iy) = d,, exp [a/(aR)fz]+b,, exp [-a/(aR)fz] 

+b,,exp[-pz](-i) 

The boundary conditions at  y = - 1, (3.10a), and the matching criteria in the overlap 
regions when 1 + y  4 1 yet (aR)fz S= 1 then yield that the outer solution q5p) is 
given by 
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which can be more conveniently written in the form 

q5p) = b,{sinha(lfy)+acosha(l+y) [ - (aR)!p  1 +' aR ( ( ' ~ ~ p ) ] + O ( a R ) ~ } ,  

(3.14a) 
where 

i 1  
bo = - bo [ 1--- (aR):p8 (a-@lp)+O((aR)-l)].  

Thus the expansion in (aR)* for q51 within the viscous boundary layer at the wall 
leads to another expansion in (aR)-! for q51 in the outer inviscid region. Similarly we 
see that in fluid 2, the outer inviscid solution for q5e has the form 

n 
(3.14 b)  

The value of c is found from the interfacial boundary conditions at y = 0, (2.3). 
Equation (3.4) is not valid near y = 0 because of the presence of an interfacial viscous 
boundary layer there where again viscous forces must be taken into account. 

To find a solution for q51 and #e valid at the interface we transform (2.1) by the 
change of variable 

u = (aR)h y (3.15) 

to give 

where 

ic iu 

(C-X)  q5f) = w, (j = 1,2).  
dta aR 

We look for solutions to (3.16) of the form 

(3.16a) 

(3.16 b)  

( 3 . 1 6 ~ )  

(3.17) 

and match the inner interfacial solution to the outer inviscid solution of (3.14) in the 
overlap region where Iyl -# 1 but (aR)!IyI B 1. Thus we find that near y = 0 

$8) = b, { sinh a( 1 + y )  +a cosh a( 1 + y )  7 ( - -~ )+&(( ' -~ ' ' )+O(CZR)-~] }  

/ m  \ 

x -ye+- 1 [ 1 -+ (! + y) y ]  + -& $ (1 + y) + O(aR)-:} (3.18a) 
{:q (aR)h 

and 

XI---++ i miyz [I-; (&-%) y]--- 1 2imS (--&$+O(aR)+}, 1 4q me aR) aR q8 
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(The constants d, ,  and b,, of (3.18) should not be confused with the constants d,, 
b , ,  j = 0 , l  or d,# and b,, of (3.7), (3.12).) The interfacial boundary conditions (2.3) 
a t  leading order are 

(3.20 a )  b, sinha = a,,, 

q2(aR) d,, = m - q2 (aR) bio, ( 3 . 2 0 ~ )  
m 

q3(aR): d,, = m (3) (aR)i b,,. (3.20 d )  
mp 

Equations (3.20b, c ,  d) combine to give 

di, = bi, = 0. 

Therefore the leading-order terms of (2.3b, c, d) are 

ab, cosha+qdil = - a a O O - 7  q bil+--, a00 ( 1  -m) 
me co m 

( 3 . 2 1 ~ )  

q2(aR)idi, = m !I2 - (aR)ib,,, (3.21 b )  
m 

These equations show that 
d,, = bi, = 0. (3.22) 

Then (3.21a), the tangential velocity condition, is equivalent to (3.21 c),  the normal 
stress condition. From (3.20a), the normal velocity condition, and ( 3 . 2 1 ~ )  or ( 3 . 2 1 ~ )  
we find that 

1-m 
m 

(3.23) 

Thus at leading order the viscous portion of the disturbance at the interface is 
negligible and the first term in the series expansion for c, (3.5c), is found from the 
solution of the inviscid boundary conditions a t  the interface, which are continuity 
of normal velocity and stress. 

The interfacial boundary conditions at  next order yield 

a,, = b, cosh (-:), 
d. a2 =-mm-' Pbi2 

(3.24 a )  

(3.24 b )  

where 

and 

(3.24 c) 

( 1  - m )  e--2a 
c1=---. 

m P  
(3.24d) 
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Since p = e+I4 ( 1  +co):, 
e-2a 

(1 -m)  ein/4 

( l+c0)iY c1=-- m 
(3.25) 

which implies that the flow is unstable if m > 1 and stable otherwise. 
One may proceed in a similar fashion to calculate higher-order approximations to 

c. We find that the inviscid part of the eigenfunctions $Ii) and $ii) contribute a 
second-order correction to c of the form 

1-m e-2a [ f + + ( l - m / m )  e-2u+a(l+co)] 
c2i = -i (7) 

(1 +c0l2 
9 ( 3 . 2 6 ~ )  

and the viscous part of $r) and $ii) contribute a second-order connection to c of the 
form 

cZV =-2ia2[(1+m)+(1-m)e-2a] .  (3.26 b) 

We thus have found an expansion for c of the form 

1 1 
(aR); aR 

c = co+- c +- (c2i+c2v)+..., (3.27) 

where co is given in (3.23), c1 in (3.25) and c2i and cZv in (3.26). 
This series expansion for c has been checked numerically. In  $4 the exact secular 

equation for c is derived and solved using both numerical and asymptotic techniques. 
The same asymptotic expansion for c is found when /3 4 1 and (aR)f % 1 and the 
expansion is shown to be in good agreement with numerical results (see figure 4). 

We note that the terms co, c1 and cZi all arise from the expansion for $ in the inviscid 
region and hence are due to the disturbance vorticity created at the wall. The term 
co is real and therefore does not affect the stability of the flow. The imaginary part 
of both c1 and c2i is positive when m > 1 which implies that the viscous boundary 
layer at  the wall can be a destabilizing influence on the flow. 

The term cZv arises from the expansion for q5 in the viscous boundary layer near 
the interface. This term is pure imaginary and always negative and we therefore 
conclude that when /3 4 1 and (aR): % 1 the viscous boundary layer at the interface 
has a stabilizing effect on the flow. 

As a + 00, c tends to the value found by Hooper & Boyd when their wavenumber 
was small (HB, equation (27)). Thus as the separation between the solid boundary 
and the interface increases with all other parameters of the flow held fixed, the 
destabilizing effect of the viscous boundary layer at the wall is reduced and the 
stability of the flow is eventually governed only by the effect of the disturbance within 
the viscous boundary layer a t  the interface. Neutral stability results when the 
destabilizing effect of the wall viscous boundary layer balances the stabilizing effect 
of the interfacial boundary layer. Therefore when (aR)f B 1 ,  neutral stability will 
result for m > 1 whenever 

e-2a 2a2 (??) (2(1 +co)aR)t - aR 
-- [( 1 + m) + (1 -m)  e-2u]. (3.28) 

From this equation we deduce that when m > 1 there exists a branch of the neutral 
stability curve which in the (a, R)-plane behaves like 

a - +lnR as (aR)f+oo, (3.29 a) 
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In (aR); as (aR$+m. 
8 - m  (3.29b) 

Comparison of the numerical results with (3.29) reveals that in figure 6, the 
appropriate branch of the neutral stability curve has not yet reached this asymptotic 
regime. In fact when R = 900 the value of (aR): on the appropriate neutral- 
stability-curve branch is only 7.86. Figure 3 clearly shows that (aR); = 7.86 is outside 
the regime of this asymptotic analysis. The numerical results show that the 
appropriate branch of the neutral stability curve approaches the asymptotic be- 
haviour of (3.29) for (aR)t 2 20 approximately. 

3.2. Unequal density and non-zero surface tension 

When the densities of fluids 1 and 2 are not equal, the eigenfunction $2 and the normal 
stress boundary condition must be modified to include the density ratio parameter 
r ,  where r =+ 1. The normal stress boundary condition must also be modified to include 
the effect of the gravity component acting normally to the flow and the effect of 
non-zero surface tension. 

First we assume that surface-tension effects and gravity are negligible. When 
r =k 1, the eigenfunction $f), (3.18b), is modified to 

(3.30) 

We substitute $ii) of ( 3 . 1 8 ~ )  and $!f) of (3.30) into the interfacial boundary 
The eigenfunction $ii) is unchanged. 

conditions at y = 0 to find that at  leading order 

and 

At O(aR)-f 

b,, = d,, = 0, a,, = b, sinh a 

r-m 1 
= ~ [ r + c o t h a ] *  

ab,( 1 - r )  r (cosh a + m sinh a)  
q(r - m )  ( r  + .;/mi) 

d,, = rb,, = I 

r -  1 
uol = a cosha 

(3.31a, b )  

(3 .31~)  

(3.32a) 

(3.32b) 

and 
(r-m) 1 r (  1 - r ) 2  (cosh a + m sinh a)2 1 c =-- 

m [p(cosha+r ~inha)~]-qm(r-m) (cosha+r sinha)2 (r+d/mf)’ 
(3 .32~)  

where p is defined in (3.8) and q is defined in (3.19). 
The first term in (3 .32~)  is a straightforward modification of c1 in (3.24) and is due 

to the viscous boundary layer at the wall. This term is destabilizing when r < m and 
stabilizing when r > m. The second term in (3 .32~)  is due to the viscous boundary 
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layer at  the interface and is always stabilizing. Thus when r =I= 1, the stabilizing effect 
of the interfacial viscous boundary layer when (aR)f 9 1 and B 4 1 is apparent at  
O(aR)-f, compared to O(aR)-l when r = 1. 

When a >> 1, the result in (3.32) can be compared with that of Dore (1978a, b) who 
studied damping of interfacial gravity waves in deep water when there is no basic 
shear flow. He found that the interfacial viscous boundary layer introduces a 
stabilizing item at O(aR)-t even when r = 1. 

Now consider the effect of non-zero surface tension and gravity. From $2 we note 
that surface tension and gravity appear in the normal stress condition in the form 

which equals 

(a2S+ F) - q5(0) 
C 

(3.33a) 

(3.33 b )  

where S, F, SHB and FHB are defined in $2. 

term is the expansion for a c  is merely modified by the addition of the term 
Since p << 1, the effect of a non-zero value of SHB and FHB is small. The leading 

(3.34) 

This term is purely real and plays no part in the stability of the flow except where 
the leading term in the expansion for c,co occurs in the next-order terms. The 
numerical results given in figure 3 ( c )  for different values of S,, confirm that in this 
region where t9 4 1 and (aR); >> 1, surface-tension effects are negligible. 

3.3. Extension to channel flow confiurations 

This scheme is easily extended to channel flow configurations. Consider Couette flow 
of two viscous fluids of equal density confined to a channel where d j  denotes the depth 
of fluid j ( j  = 1,2). This system contains the dimensionless parameter n, the 
depth ratio equal to d21d, in addition to the dimensionless parameters listed in $2.  

The outer inviscid solution for q52 is now affected by the viscous boundary layer 
that exists near the solid boundary at  y = n but the solution for q5 at the interface 
remains unchanged. We find that the outer inviscid solution for q52 is 

(3.35 a )  q5$') = a, e-"' + e, eaY, 

and the solution for q5, near the wall, y = n, is at leading order 

where 
i 

m2 
.s2 = - (n-mc) (3.35 c) 

and z = (aR)i (n- y). (3.35d) 

We match q5iW) and $$') in the overlap region where both forms of q52 are valid and 
apply the boundary conditions at z = 0 (equation (3 .8))  to show that at leading order 

cosha(n-y) . 1 #!j@ = a, [sinha(n-y)-- a 
s(aR)i 

(3.36) 
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Section 3.1 showed that &’) gives the correct behaviour for the disturbance at y = 0 
up to O(aR)+. Thus we need only consider the inviscid boundary conditions at y = 0 
to show that 

a sinh a( 1 + n) (3.37a) 

1. (3.373) and 

In particular when a -4 1 

c 1 = - 0 [  1 - m eirr/4( 1 + co)-: sinh2 an + e-iz/4 m(n - mco)-t sinh2 a 
sinh2 a( 1 + n )  

l - m  n 
CO = -- m l + n  

(3.38a) 

and 

Therefore neutral stability results when n5 = m. When m > 1 ,  the flow is stable if 
n < d, and unstable otherwise. Thus the depth of the more viscous fluid is an 
important factor in this instability and the boundary which limits the depth of the 
more viscous fluid exerts a stabilizing influence if close enough to the interface. These 
results agree with those of Renardy (1985) who studied the stability of Couette flow 
of two superposed viscous fluids confined to a channel using numerical techniques. 
She chose m = 2 and n = 3 and found a region of instability when (aR): %- 1 and 

3.4. Energetics of the Jlow 

Energy considerations provide a useful insight into the nature of this instability. The 
energy equation for the disturbance to the flow depicted in figure 1 and averaged over 
one wavelength of the disturbance is 

p.4 1. 

where (wf, vf) is the disturbance velocity in fluid i, ( i  = 1,2) ,  ed;) is the rate-of-strain 
tensor of the disturbed flow in fluid k, (k = 1,2)  and T12 is the tangential stress at 
the interface, y = 0. (For further details compare HB.) 

When (aR)j 9 1 and /3 B 1 all terms in (3.39) can be expressed in a descending 
power series of l/(aR)i. We find that the Reynolds stress and the viscous dissipation 
in fluid 1 ,  the fluid which is bounded by the wall at y = - 1 and the interface at y = 0, 
are both O((aR)-?) whereas the Reynolds stress and viscous dissipation in fluid 2 and 
the term on the right-hand side of (3.39), which represents a transfer of energy via 
the tangential stress at the interface, are all O((aR)-’). Therefore the effect of the 
upper fluid and the tangential stress at the interface on the instability is negligible 
compared to the effect of the lower bounded fluid. Further analysis shows that in fluid 
1 (when S = 0 and r = 1 )  the sum of the viscous dissipation term and the Reynolds 
stress term, a term which is always positive when aR % 1 and /3 4 1, is 

(+)- a3 lbOl2 sinha 
(a@ [2(1 +c,)]i a eu ’ 
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where co is defined in ( 3 . 1 3 ~ ) .  The above term is positive when m > 1 and negative 
when m < 1. Therefore when m > 1 ,  the stabilizing influence of viscous dissipation 
is not sufficient to overcome the destabilizing effect of the Reynolds stress. When 
m < 1, however, viscous dissipation does stabilize the disturbance. 

This analysis suggests that the instability a t  large (aR); is due to the disturbance 
vorticity generated at the solid boundary. It seems that this unstable mode is similar 
in nature to a Tollmien-Schlichting wave which produces instability in bounded 
two-dimensional parallel shear flows. Study of the energy equation shows that the 
instability is driven by the Reynolds stress in the lower fluid whereas the HB 
short-wave instability is driven by transfer of energy at the interface via the 
tangential stress of the disturbance. The mechanism for the instability is therefore 
quite different from the mechanism for the HB short-wave instability. Viscous forces 
dominate the HB instability and an argument for the mechanism of this instability 
is given by Hinch (1984) in terms of advection of the disturbance vorticity. 

4. The exact solution 
4.1. The secular equation and its numerical solution 

The problem posed in $2 may also be solved exactly for any value of a and R. We 
will assume r = 1 in this section. The Orr-Sommerfeld equations of (2.1) contain 
solutions in terms of Airy functions. Thus the solution to ( 2 . 1 ~ )  subject to the 
boundary conditions of (2.2) is 

R 
1 Y  

a -1 
$,(y) = a, [- sinha(y-z) Ai eial6 (aR)t (z-c-i E))dz] 

+a2 [A I" sinha(y-z) Ai e5in/6 (aR)f (z-c-i 3> dz], ( 4 . 1 ~ )  
a -1 

and the solution to (2.1 b) subject to the boundedness of q52 as y+ co is 

1 aR . am2 
2a R 

$%(y) = b, e-aY+ b, - 

+eaY Jrn e-uz Ai (einI6 (-) aR f (z-mc- i e)) dz}. (4.1 b )  
m R Y 

We substitute the above forms of q51 and $2 into the interfacial boundary conditions, 
(2.3), to derive a secular equation F(a,  R , m , c )  = 0, which may be regarded as the 
dispersion relation. This secular equation has the form 

1 
ei"l6 (N12A;1-e2i"/3 N,,  (N12All-NllA12) 

( 4 . 2 ~ )  
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where 
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a fl=jii@, K = (aR):c, 

A,, = Ai (K+ip)),  (4.2b) 

A 12 = Ai(e-in/8 ( K + i p 2 ) ) ,  ( 4 . 2 ~ )  

(4.2d) 

sinh(pz)Ai(e% (z+K+ip))dz ( j =  1,2), (4.2e) 

(aR)i  

M,, = I cosh(pz) Ai(eiej (z+K+ip))dz (j = 1,2), (4.2.f) 
0 

(4.2h) 

(4.2i) 

and ' denotes the derivative. 
Inspection of (4.2) shows that the important parameters of the problem are 8, 

which is related to  the dimensionless wavenumber measured on the viscous length- 
scale, and (aR$ The dimensionless wavenumber a does not appear explicitly within 
the expression for F. 

y e  solve the secular equation numerically. We compute the Airy functions of 
complex argument that appear in ( 4 . 2 ~ )  using an algorithm developed by Schulten, 
Anderson & Gordon (1979). We find the roots of the secular equation by searching 
for the minima of Iq2 with respect to c for any given m(aR):, /3 and SHB. The strategy 
to find all the modes of the instability is similar to  that used by HB. We fix the value 
of m and S,, and find all the roots of the secular equation when /3 -4 1 and (all): % 1. 
We then follow each mode either by fixing (aR)j and changing /? by small steps or 
by fixing p and changing (aR)! by small steps. 

When (all)! % 1 and p 4 1, (4.2) reduces to  

A' e2jnI3 A,  AiP) (1 + e )  = 0. 
(mQ (1-m) 1 

l1 K p (4.3) 

In the above equation the relative magnitude of the neglected terms of (4.2) is denoted 
by E. Lengthy asymptotic analysis shows that E - O(p(aR)-j). 

The different modes of the instability are easily identified from (4.3). First there 
are the modes which are solutions to  

There are an infinite number of modes which satisfy this equation. These are 
interfacial modes first identified by HB (equation (25)). They showed that these 
modes are stable. Figure (2a) shows the first four interfacial modes when p = 0 and 
m = 2. These modes have been found by solving (4.2) numerically. We see that for 
(all): > 5, the first three modes are already in the asymptotic regime (aR)i % 1 and 
B 6 l-regime (iii) discussed below-and are solutions to (4.4). 
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(a@ , 2,O 4:O 6:O 8:O IO..O 12.0 14.0 

- 1.0. 

- 2.0. 

Im (4 
-3.0. 

FIGURE 2. Graphs of Im ( K )  vs. (all): for m = 2 and j? = 0 for (a) the interfacial modes, which for 
large (all? are solutions to (4.4); ( b )  the wall modes, which for large (all)# are solutions to (4.5). 

There are also modes when Qll - 0 and N , J P  - 0. These are the wall modes and 
when /? = 0 are given approximately by 

K = -(aR):-zkn ePinls (n = 1,2,3,  ...), (4.5) 

where z+, are solutions to - 

I,” Ai ( t )  dt = 0. 

Figure (2b) shows the first three wall modes when /? = 0 and m = 2. These modes 
became increasingly more difficult to compute as (aR$ is decreased but the results 
suggest that they always remain stable. 

There is one more mode, the solution of which is given by 

This mode is unstable when m > 1. This is precisely the same mode that is unstable 
in the short-wavelength regime previously studied by HB. The neutral stability curve 
in the (/3, (a@)-plane for m = 2 and S,, = 0 is shown in figure 3(a) .  

The asymptotic term of each branch of the neutral stability curve is marked on 
figure 3(a ) .  The results of HB show that in the case of unbounded Couette flow, 
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FIGURE 3. The neutral stability curve in the (j3, (aR)i)-plane when m = 2. (a) S,, = 0. The 
asymptotic trend of each branch of the neutral stability curve is shown and stable and unstable 
regions are marked. ( b )  Lines of constant growth when S,, = 0. The growth rate is marked on each 
line. (c) Neutral stability curve for S,, = 0, 0.25 and 0.5. The hatched region marks the unstable 
region for S,, = 0.5. 
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instability exists when m = 2 once Zx(u/a):/h > 0.145. The wavenumber /3 equals 
[Zx(v/a):/h]$. Therefore we deduce from the results of HB that as (aR):+ co the upper 
branch of the neutral stability curve in the (/3, (&)-plane tends to /3 = 0.276. The 
numerical results confirm this. The asymptotic results of $3  show that as (aR)t+ 00, 

the lower branch of the neutral stability curve tends to /3 - log (aR)i/(aR)i. The other 
branch of the neutral stability curve, which arises in the region (aR)f - O ( l ) ,  is found 
from numerical calculations to cut the (aR$ axis at  (aR)i = 3.107. Asymptotic 
calculations given in $4.4 yield that as /3 becomes large this branch asymptotes to 
the hyperbola /3(aR)! = 1.8. Figure 3(a )  shows that the numerical results for this 
branch of the neutral stability curve are already quite close to the asymptotic results 
when /3 - 1.0. 

Lines of constant growth are shown in figure 3 (b ) .  The regime in figure 3 (b) ,  where 
all constant-growth lines are parallel with the (aR)t axis and are thus independent 
of (ocR)i, can be identified with a flow configuration where the bounding wall is 
unimportant. Therefore we recover the results of HB. The effect of non-zero values 
of surface tension is shown in figure 3(c). The short-wave instability of HB is 
stabilized by surface tension. Again we recover the results of HB and show that at  
m = 2.0 and X,, = 0.5 the short-wave interfaced wave is completely stable. Surface 
tension, however, does not affect the instability that arises when /3 4 1.  

4.2. Asymptotic analysis of the secular equation 
We note that when (aR)f & 1,  the integrals N,,,  M, ,  and Q,, in ( 4 . 2 ~ )  become 
exponentially larger than other terms in the secular equation. If we further assume 
that /3 & 1 so that N,, - @,, and M,,  - gll, we find that in the limit (aR)t+ 00 

the secular equation factorizes. One family of solutions are then given by the factor 

Qii = 0 

and are the same modes found in semi-infinite Couette flow for short wavelengths. 
These modes are generated by the solid boundary and are always stable. 

The second factor is identical with the secular equation found by HB for 
unbounded Couette flow of two superposed fluids of different viscosity and solutions 
to this factor are the modes generated by the presence of the interface alone. Therefore 
when /3 and (aR)k are both large, the stability of the flow configuration of figure 1 
separates into the stability problem of semi-infinite Couette flow of one fluid bounded 
by a wall which gives rise to stable wall modes and the stability problem of unbounded 
Couette flow of two superposed viscous fluids which gives rise to interfacial modes. 
HB have shown that one of these modes is unstable in the short-wavelength regime. 

The secular equation can in fact be solved analytically if /3 and (aR)f are assumed 
large or small. This gives rise to four regimes amenable to asymptotic investigation. 

(i) (aR)i % 1 and p % 1 

previously by HB by a short-wave perturbation scheme. 

(ii) (all)! 6 1 and /? 4 1 

This gives rise to the long-wavelength perturbation scheme first devised by Yih 
(1967) for the channel configuration of two superposed viscous fluids and adapted 
by Hooper (1985) for the flow configuration of figure 1.  The growth rate of the 
instability is found to be proportional to (1 - m )  and so the flow is stable if the film 
of fluid is the less viscous fluid (m > 1)  and unstable otherwise. 

This asymptotic regime has been discussed above and has also been studied 
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(iii) (aR9 >> 1 and /3 < 1 
This is the asymptotic regime studied in $3 by the singular perturbation method. 

The asymptotic analysis of the secular equation in this regime is discussed further 
in $4.3. 

(iv) (aR)i< 1 and p B 1 
The nature of the instability in this regime turns out to be similar to  the instability 

found in regime (i). Further details of the asymptotic analysis of the secular equation 
in this regime are found in $4.4. 

4.3. Asymptotic analysis in regime (iii) 
When (aR)t >> 1 and /3 4 1, (4.2) reduces to  (4.3). The solution of the unstable mode 
of (4.3) is given by - 

l - m  Nll 
K = - -  

m PQll' 
which is equivalent to 

1 

sinh at Ai (e-5in/6 (aR)i (t  + c)) dt 

lo1 eat Ai (e-5in/6 (aR)i (t  + c)) dt * 

c=-  l - m J o  (4.7) 

Numerical results suggest that  for this mode c is real a t  leading order and O(1). The 
Airy functions within the integrands of (4.7) can therefore be replaced when 
(aR)i >> 1 by their asymptotic form, 

00 

Ai ( 2 )  = &~-kf exp (-322) X dn 2-2 as IzI + co (4.8) 
n -0 

where larg (z)l < n: (Abramowitz & Stegun (1965, 10.4.59)). We check that the 
argument of the exponential term has no stationary points and apply Watson's 
lemma to evaluate each integral in (4.7) when (d); >> 1. In such a manner we find 
that c has the following asymptotic form when (all)) B 1 : 

( 4 . 9 ~ )  
1 1 

c = co+- c +-c12, (aR)i l1 aR 

(4.9b) 

(4.9c) 

(4.9d) 

The O(e)-terms in (4.3) also contribute to the series expansion in (aR)-1 of c. We find 
that at leading order, the O(s)-terms modify c by the addition of the term 

1 -m sinha 
where c0=-- m a e a '  

1 - m e-3in /4 
e-2a 

Cll = - 
m (1 +cop' 

:+$l-m/m) e-2"+a(l+co) 
( 1 + co)2 

and C12 = -1 - 
m 

1 
c217 (4.9e) 

where c21 = -2ia2[(1+m)+(1-m) e ~ ~ ~ ] .  (4.9.f) 
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FIQURE 4. The unstable mode that arisea when m > 1 with (aR)i $ 1 and p + 1. (a) Im ( K )  va. (aR)f 
when B = 0 and m = 1,5,2.0: . , the aaymptotic form for Im ( K )  of (4.9). (a) Im ( K )  us. m when p = 0 
and (i) (aR)i = 20.0, m > 1 ; (ii) (aR)i = 5.0 m < 1. . , the asymptotic form for Im ( K )  of (4.9) up 
to O(aR)f ;  x , the asymptotic form for Im ( K )  of (4.9) up to O(aR)-l. (c) Im ( K )  va. B when m = 2.0 
and (aR)d = 18, 20. x , the asymptotic form for Im ( K )  of (4.9). 

FLm 179 8 
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The expansion for c shown in (4.9) is in agreement with the results of $3. Numerical 
results for this mode are shown in figure 4. The asymptotic form for c is in good 
agreement with the numerical results for moderate values of m, large values of (a@: 
and small values of ,!?. 

4.4. Asymptotic analysis in regime (iv) 
This regime is amenable to solution by either direct asymptotic evaluation of the 
secular equation or by a regular perturbation scheme applied to the governing 
equations of motion, (2.1), and the boundary conditions, (2.2) and (2.4). Both 
methods yield the same results and since the regular perturbation scheme is easier to 
implement, only this method will be described. 

We rescale the equations of motion and boundary conditions using ay  = z and 
hence solve the following system of equations : 

subject to  
= 0, ( 4 . 1 1 ~ )  

$;(-a) = 0, (4.1 1 b) 

$2+0 asz+oo, (4.12) 

and the 'interfacial conditions at y = 0 

(4.13b) 

(4 .13~)  

and 

where 

Equation (4.22) can be solved by a regular perturbation method. Assume expansions 
for q5* ( j  = 1,2) and c of the form 

+I(%) = Z en $ln(Z)t 

$ 2 ( 4  = z en 9 2 J 4  

m 
(4.14a) 

(4.14b) 

c = Z P C n ,  (4 .14~)  

(4.14d) 

n-o 
m 

n-o 

m 

n-o 

$1n(z) = bn(z) eL +dn(z) e-', 

and 

(4.14e) 

(4.14.f 1 
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The items a,, b,  and d ,  are polynomials in z. We substitute these expansions for 
q51, q52 and c in (4.22)-(4.25). At O(s0) we find that 

4a( 1 - m) 
e2a (1 + m)2 +e-2a (1 -m)2 + (1 -m) (1 + m) (4a2 + 2) * co = (4.15) 

At  O(s) we find that c1 is pure imaginary and when a is large, the expression for c1 
simplifies to 

- a2S 1. 
[2a(1 +m)m2 2(1 + m )  

(1 -m)2 
c1 - i 

The growth rate of the disturbance is equal to @/a) c1 and is the same growth rate 
found by HB for the unbounded two-fluid problem. The value of cl/a2( = I m  ( c ) / R )  
for any value of a is shown graphically in figure 5 for various values of dimensionless 
surface tension S. Figure 5 shows that when S = 0 the flow is stable below a = 1.8 
and unstable above a = 1.8. This result indicates that on the (p ,  (aR)t)-plane, one 
branch of the neutral stability curve asymptotes to the hyperbola a = B(aR)t = 1.8 
as /3 becomes large. 

Table 1 shows the agreement between the analytical values for Im ( K ) ,  which are 

8-2 
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Analytical Numerical 

Kr Ki Kr Ki 

(a)  u = 1, m = 2.0 
R 

0.2 -0.048095 -0.000636 - 0.048134 -0.000563 
0.1 -0.038173 -0.000250 -0.038181 -0.000224 
0.01 -0.017718 -0.000116 -0.017720 -0.ooo011 

( b )  a = 2, m = 2.0 

R 
1.0 -0.023044 0.4676 x - 0.0232 11 0.395 x 

0.01 -0.004965 0.1007 x -0.004965 0.1 x 10-6 
0.1 -0.010696 0.2171 x -0.010697 0.18 x 10-4 

(c) R = 1 ,  m = 2.0 
U 

2.0 -0.023044 0.4676 x -0.02321 1 0.395 x 
3.0 -0.004921 0.1087 x -0.005004 0.1077 x 
4.0 -0.000954 0.8175 x -0.000999 0.815 x 

TABLE 1 .  Comparison between analytical and numerical values for Im ( K )  

equal to (aR)ia-ac,, and the numerical values for Im ( K ) ,  which are computed from 
(4.2) at small R. From figure 5 we also note that there is a critical value of S (0.00498) 
which stabilizes the flow at small R for all values of a. 

5. Discussion 
We have demonstrated that for the flow configuration of figure 1 there are three 

main types of instability which depend on the magnitude of the parameters (aB)t and 
/3. When (aR)i < 1 and /3 < 1 we find the Yih-type instability, which is only apparent 
if the lower bounded fluid is more viscous than the upper unbounded fluid. When 

9 1 we find the short-wave instability of HB which occurs solely because of the 
presence of the interface. We have identified a third type of instability which exists 
in the regime (aR)i 9 1 and #I -4 1. This instability arises at the viscous boundary 
layer at the wall and is only apparent when the kinematic viscosity of the lower 
bounded fluid is less than the kinematic viscosity of the upper unbounded fluid. The 
instability is confined to the lower less viscous fluid and the upper fluid remains 
relatively undisturbed. 

Figure 6, which depicts the same neutral stability curve as figure 3 (a) but in the 
(a,R)-plane, where R is the Reynolds number of the lower fluid, shows that in the 
absence of surface tension, the flow of two fluids of equal density but with viscosity 
ratio m = 2 is unstable at all values of R. The numerical results depicted in figure 
3 (c) and the asymptotic results shown in figure 5 reveal that surface-tension effects 
stabilize the flow at small R. 

When m < 1, the flow configuration of figure 1 is still unstable when B B 1 and 
(aR)i % 1. This is the HB instability which arises in the absence of solid boundaries. 
The results of 54.4 show that this short-wave instability still exists when (aR)i -4 1. 
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FIGURE 6. The neutral stability curve when m = 2.0 and S,, = 0 in the (a, R)-plane. The 
asymptotic trend of each branch of the neutral stability curve is marked and stable and unstable 
regions are defined. 

Asymptotic analysis yields that in the regime /3 < 1 and (aR)f < 1 the flow is unstable 
when m < 1 whereas when B 6 1 and (aR)f 9 1 the flow is stable. Thus the neutral 
stability curve for m < 1 is quite different from that for m > 1 when (aRF is small 
or /? is small. Figure 7 (a) shows the neutral stability curve for the flow configuration 
of figure 1 with two fluids of equal density but viscosity ratio m = 0.5 in the 
(B,  (aR)f)-plane. Figure 7 (b) which is the same neutral stability curve but in the 
(a, R)-plane shows that this flow is unstable at all values of R. 

The instability of $3, which arises when m > 1, (aR)f B 1 and /3 6 1 ,  is charac- 
terized in figure 6 by the unstable region at large R between the two lower branches 
of the neutral stability curve. The results of 83.2 show that for fluids of unequal 
density the flow is unstable if the viscosity ratio m( = pZ/p1) is much greater than 
the density ratio T (  = p8/pl) and that the effect of surface tension and gravity on this 
instability is negligible. Therefore by interpreting the results of ( 3 . 3 2 ~ )  and (3.34) to 
extrapolate figure 6 to the case of two fluids of unequal density as well as unequal 
viscosity, we predict that an instability of moderate wavenumber a ( -  d / A )  should 
arise in the lower bounded fluid at high R of the flow provided that the kinematic 
viscosity of the lower fluid is less than the kinematic viscosity of the upper fluid. 

Some experimental evidence for this instability may be found in the works of 
Charles t Lilleleht (1965) and Kao & Park (1972). Both studies were of plane 
Poiseuille flow of two superposed viscous fluids, namely oil and water, confined to 
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FIQURE 7. The neutral stability curve when m = 0.5 in the (a) (/I, (all):)-plane for S = 0.0; ( b )  
(a, @-plane for S,, = 0, 1.0. 

a channel. Both report an instability arising at high R of the less viscous fluid which 
causes the less viscous fluid to become unstable and the interface to become wavy 
but which does not affect the more viscous fluid. In particular Charles k Lilleleht 
report that for this instability the interfacial waves are approximately 0.5 in. long 
compared to a channel depth of 1 in. and that the ratio of oil Reynolds number to 
water Reynolds number is moderate. This implies a wavenumber a of approximately 
2. These values of a and R together with a viscosity ratio m = 5.3 and a density ratio 
r = 0.82 suggest that this instability may be the instability studied in 53. 

Poiseuille flow of one fluid confined to a channel is unstable at  high R because of 
the presence of unstable Tollmien-Schlichting waves. The instability observed by 
Kao & Park and Charles & Lilleleht may be this unstable mode rather than the 
unstable interfaced mode discussed here. The mode that will be observed in practice 
is likely to be the one with the largest growth rate. The numerical results of figure 3 
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show that the growth rate of the unstable interfacial mode at non-zero values of 
surface tension is similar in magnitude to the growth rate of the unstable Tollmien- 
Schlichting wave of Poiseuille flow (see Rosenhead 1963, p. 531). 

Hame t Muller (1975) have studied the stability of plane two-layer Poiseuille flow 
in the absence of surface tension. The flow configuration comprises a more viscous 
core fluid bounded by two thin layers of less viscous fluid next to the walls. Their 
results seem to indicate unstable Tollmien-Schlichting waves in Poiseuille flow rather 
than the unstable mode discussed in this paper. Blennerhassett (1980) studied the 
stability of various basic flows of two superposed viscous fluids in a channel. He 
discovered a variety of modes, some of which are surface modes and others shear 
modes. The results of his linear analysis indicates that the surface modes are the most 
unstable. 

Finally it should be noted that the range of validity of the linear stability theory 
which at present is restricted to disturbance amplitude much less than the viscous 
lengthscale, can be greatly extended using curvilinear coordinates at the interface. 

We wish to thank the referees for their many helpful comments. This work was 
supported by SERC grant GR/D/2417.3. 
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